

MANUAL DE SERVICIO

ONI-C-1218W-E/ONI-C-1218W

ONI-C-1818W-E/ONI-C-1818W

ONI-C-2418W-E/ONI-C-2418W

ONI-C-3618W-E/ONI-C-3618W

ONI-C-1218W-110-E/ONI-C-1218W-110

CONTENIDO

1.Alcance y condiciones	3
2.Especificaciones de control	
3.Planos explosionados	6
4.Diagrama de flujo de refrigerante	
5.Diagrama del circuito	
6.Solución de problemas	13
7.Comprobación de componentes electricos	

1.Alcance y condiciones

Alcance de funcionamiento

Modos de funcionamiento	Temperatura	Temperatura interior	Temperatura exterior
Refrigeración	Max.	32℃ DB/27℃ WB	43℃ DB/26℃ WB
Reingeracion	Min.	21℃ DB/15℃ WB	21℃ DB

Condiciones de funcionamiento

	Condiciones nominales de funcionamiento		
	Temperatura interior	Temperatura exterior	
Refrigeración	27℃ DB/19℃ WB	35℃ DB/24℃ WB	

DB: Dry-bulb (Bombilla seca) temperatura WB: Wet-bulb (Bombilla mojada) temperatura

2. Especificaciones de control

2.1 Prevención de la congelación:

El sensor del serpentín detecta la temperatura del cambiador de calor interior. Si la temperatura es inferior al valor prescrito, la unidad reduce la velocidad de rotación del compresor para evitar que el cambiador de calor interior se congele. Si la temperatura supera el valor límite inferior, la unidad dejará de reducir la frecuencia; si la temperatura supera el valor límite superior, la unidad activará la protección contra congelación. Si la temperatura es inferior a cierto valor prescrito, la unidad se detendrá.

2.2 Control de prevención de sobrecorriente

Si el valor de la corriente de entrada detectado por el sensor de corriente exterior es superior al valor prescrito, la velocidad de rotación del compresor disminuirá y se controlará para mantener el valor de la corriente no por encima del valor límite superior; el compresor volverá a funcionar normalmente cuando el valor de la corriente descienda hasta el valor límite mínimo; si el valor de la corriente es superior al valor límite máximo, el compresor se detendrá.

2.3 Funcionamiento de la sobrecarga de refrigeración

En el modo de refrigeración, si la temperatura del cambiador de calor exterior es demasiado alta, la velocidad del compresor se ajustará automáticamente a una marcha inferior y, a veces, el compresor puede pararse.

2.4 Control de sueño (modo enfriamiento)

Pulse el botón " dormir " en el mando a distancia, la unidad controlará la velocidad de rotación del compresor y del motor del ventilador interior y entrará en modo de reposo: Velocidad de rotación del motor del ventilador: nivel medio o bajo Velocidad del compresor: baja

La temperatura ajustada aumentará 1°C automáticamente después de funcionar durante 1 hora; después de funcionar durante otra hora, la temperatura ajustada seguirá aumentando 1°C. Pero la temperatura fijada exhibida en LED seguirá siendo sin cambios.

2.5 Control de carga elevada

El sensor de temperatura del serpentín del tubo interior examina la temperatura del evaporador, si la temperatura excede el valor prescrito, la frecuencia no aumenta; si la temperatura excede el valor límite superior, la velocidad de rotación del compresor se reducirá gradualmente para evitar una carga térmica demasiado alta; si la temperatura es inferior al valor prescrito, la frecuencia no disminuye; si la temperatura es inferior al valor límite inferior, la unidad existirá control de alta carga y entra en funcionamiento normal.

2.6 Control de sobrecorriente

Si el valor de la corriente de entrada detectado por el sensor de corriente exterior es superior al valor prescrito, la velocidad de rotación del compresor disminuirá y se controlará para mantener el valor de la corriente no superior al valor límite superior; el compresor volverá a funcionar normalmente cuando el valor de la corriente descienda al valor límite inferior; si el valor de la corriente es superior al valor prescrito, el compresor se detendrá.

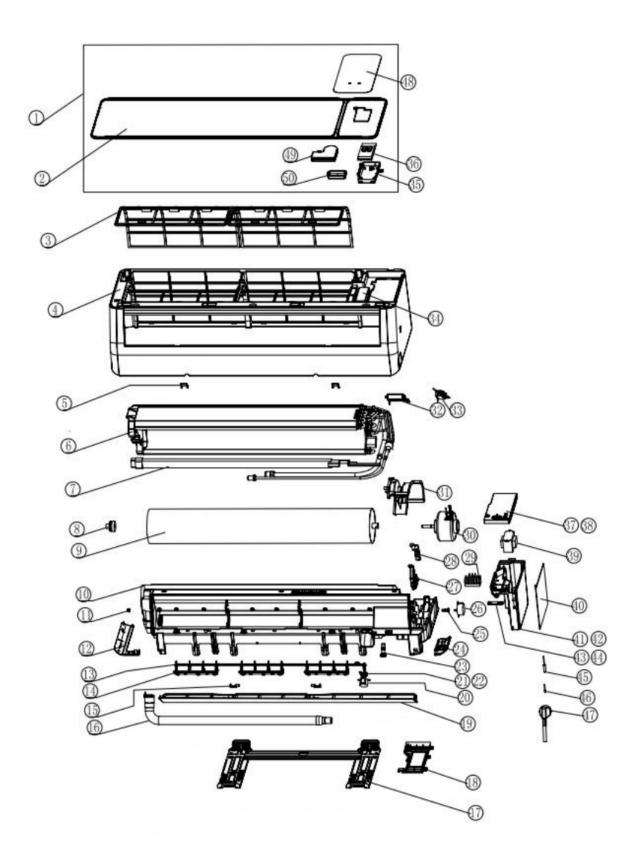
2.7 Función de protección temporizada del compresor

Con el fin de proteger el compresor (excepto para el modo de deshielo), habrá un retraso de 3 minutos para reiniciar cuando el compresor se detiene de la condición de trabajo. Y aún hay 3 minutos de retraso cuando el compresor se pone en marcha por primera vez.

2.8 Función UVC (opcional)

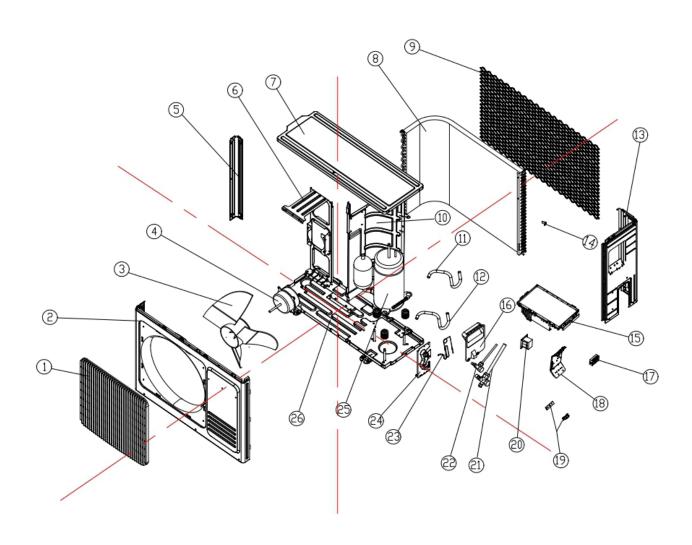
Pulse el botón UVC del mando a distancia para iniciar o detener la función de esterilización UVC.

Nota:


- 1. Este aparato contiene una lámpara UVC.
- 2. El uso no previsto del aparato o los daños en la carcasa pueden provocar la salida de radiaciones UVC peligrosas. La radiación UVC puede, incluso en pequeñas dosis, causar daños en los ojos y la piel.No utilice aparatos que presenten daños evidentes. Antes de proceder a la limpieza u otras operaciones de mantenimiento, desconecte el aparato de la red eléctrica.

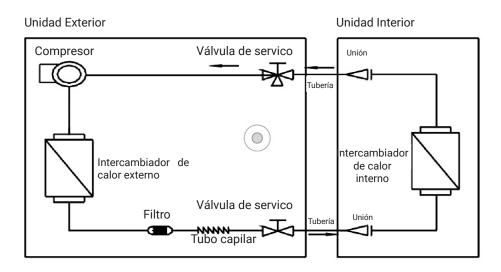
3. Planos explosionados

3.1 Vista explosionada de la unidad interior

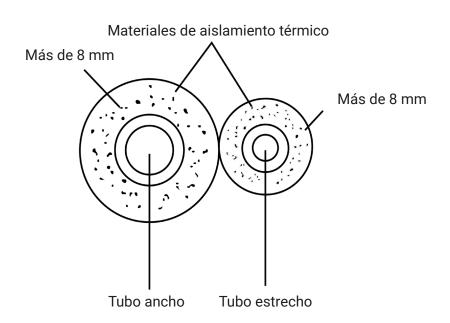

NO	Materials Description	NO	Materials Description
1	Front panel sub assembly	26	Swing vane motor
2	Front panel	27	Motor support seat
3	Air filter	28	Motor pressing plate
4	Medium frame	29	Terminal block
5	Screw cover	30	Fan motor
6	Evaporator sub assembly	31	Motor cover
7	Electric heating rod	32	Positive and negative
_ ′	(optional)	32	ion generate (optional)
8	Bearing	33	UVC module (optional)
9	Cross flow fan	34	Wife module (optional)
10	Bottom frame sub assembly	35	Display box
11	Axle sleeve	36	Panel as-display sub assembly
12	Left decorative cover plate	37	Electric control box cover
13	Connecting rod	38	Electric control box cover
14	Air deflector	39	Transformer (optional)
15	Sliding shaft plate	40	P.C.B assembly
16	Hose as-drain sub assembly	41	Electric control box
17	Hanging wallboard	42	Electric control box
18	Piping pressing plate	43	Power cord pressing plate
19	Swing leaf	44	Power cord pressing plate
20	Stepping motor (optional)	45	Pipe temperature sensor
21	Crankshaft	46	Room temperature sensor
22	Crankshaft	47	Power line
23	Water shutoff plug (optional)	48	Display window
24	Right decorative cover plate	49	Voice box assembly
25	Anti electric shaft	50	Microphone box assembly

NOTA: El producto real puede ser diferente de los gráficos anteriores, por favor refiérase a los productos reales.

3.2 Vista explosionada de la unidad exterior


NO.	Materials Description		
1	front net cover		
2	front plate sub assembly		
3	propeller fan		
4	fan motor		
5	Metal support		
6	motor bracket sub assembly		
7	Top cover assembly		
8	condenser sub assembly		
9	rear net cover		
10	partition board		
11	suction tube		
12	discharge tube		
13	Lateral plate assembly		
14	Sensor holder		
15	outdoor electric control sub assembly		
16	electric cover sub assembly		
17	Platen		
18	Terminal seat		
19	Electrical instillation board		
19	Electrical installation board		
20	reactor		
21	cut-off valve 3/8		
22	cut-off valve 1/4		
23	capillary sub assembly		
24	Valve mounting plate		
25	compressor		
26	bottom plate sub assembly		

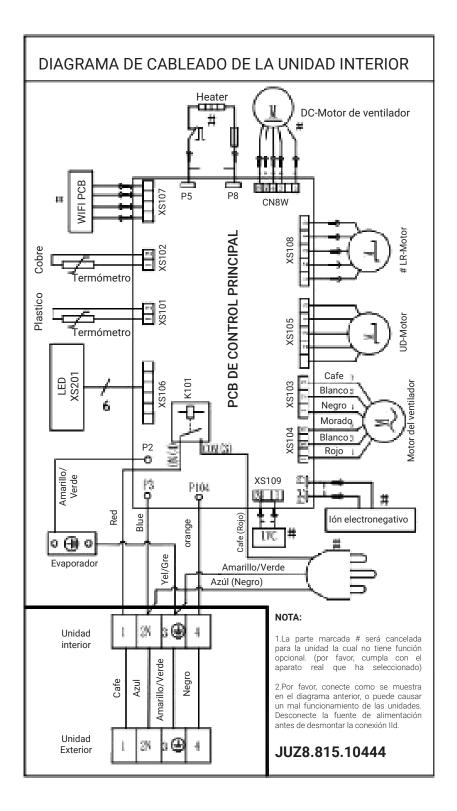
NOTA: El producto real puede ser diferente de los gráficos anteriores, por favor refiérase a los productos reales.



4. Diagrama de flujo de refrigerante

Aislamiento térmico de tuberías de refrigerante

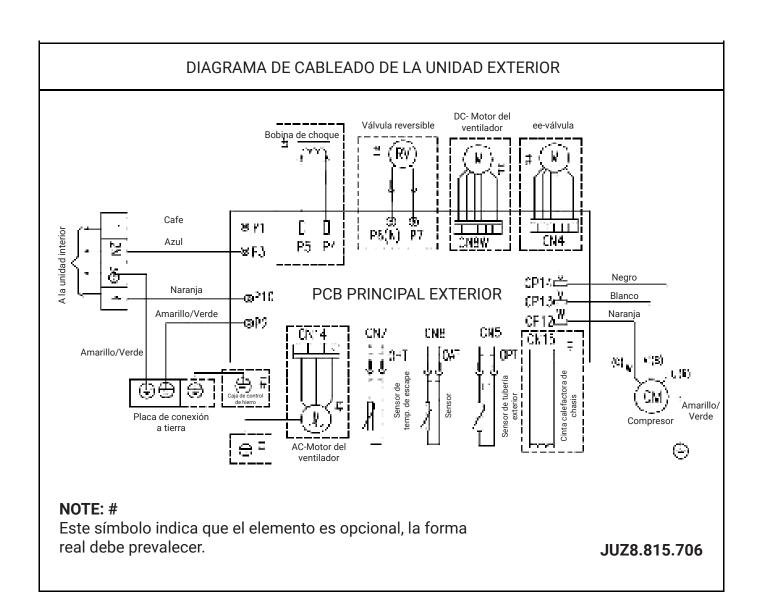
Para evitar la pérdida de calor y que el agua condensada caiga al suelo, el tubo ancho y estrecho del aire acondicionado debe envolverse con materiales de aislamiento térmico. Si se utiliza un tubo capilar y los tubos están a baja temperatura, el grosor de los materiales de aislamiento térmico deberá ser superior a 8 mm.



5. Diagrama del circuito

5.1 Esquema eléctrico de la unidad interior

Para evitar el riesgo de descarga eléctrica, asegúrese de desconectar la alimentación antes de revisar, reparar y/o limpiar Advertencia sobre cualquier pieza eléctrica.

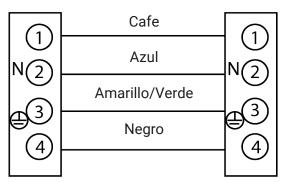


5.2 Esquema eléctrico de la unidad exterior

Para evitar el riesgo de descarga eléctrica, asegúrese de desconectar la alimentación antes de revisar, reparar y/o limpiar Advertencia sobre cualquier pieza eléctrica.

6. Solución de problemas

6.1 Comprobación previa a la localización de averías


ADVERTENCIA

La alta tensión puede provocar descargas eléctricas o la muerte.

Corte siempre la alimentación antes de realizar las comprobaciones y el mantenimiento.

Comprobar la línea eléctrica

Para comprobar si la línea de alimentación está conectada correctamente según el esquema eléctrico.

Prec

Precaución:

Por favor, conecte según el diagrama de arriba, o puede causar mal funcionamiento de las unidades. Desconecte la fuente de alimentación antes de desmontar la tapa de conexión.

6.1.2 Comprobar el cableado de la unidad

Para comprobar si los cables entre unidades están conectados correctamente.

6.1.3 Comprobar la alimentación eléctrica

Para comprobar si la fuente de alimentación está dentro del rango especificado. Para comprobar si se está suministrando la fuente de alimentación.

6.1.4 Compruebe el conector y el cable de las unidades interior y exterior.

Comprobar si la cubierta aislante del cable conductor está dañada. Para comprobar si el cable conductor y el conector están bien conectados.

Para comprobar los cables.

6.1.5 Errores y protecciones (Los usuarios pueden pulsar el código de prueba 17 para comprobar los códigos de error o los códigos de protección)

CÓDIGO	- CÓDIGOS DE ERROR			
Pantal la IDU	Detalles del fallo	Causa del fallo	Acción	
EE	Fallo EEPROM de la unidad interior	La PCB principal de la IDU está dañada.	Sustituir un nuevo PCB principal IDU	
	F0 Fallo del motor del ventilador interior	El ventilador de la IDU está bloqueado.	Limpiar el bloque del ventilador	
F0		El motor del ventilador de la IDU está dañado	Sustituir un nuevo motor de ventilador IDU	
		La PCB principal de la IDU está dañada.	Sustituir un nuevo PCB principal IDU	
E1	PCB interior Fallo de paso por cero	La PCB principal de la IDU está dañada.	Sustituir un nuevo PCB principal IDU	
		El sensor de la bobina IDU está	Flojo: conéctelo bien de nuevo:	
F3	Fallo del sensor de la bobina interior	suelto cortocircuito o circuito abierto.	Cortocircuito o circuito abierto: sustituya un nuevo	
13			sensor de bobina IDU.	
		La PCB principal de la IDU está dañada.	Sustituir un nuevo PCB principal IDU	
	Fallo del sensor de	IDU sensor de temperatura ambiente está	Flojo : conéctelo bien de nuevo ;	
F1	temperatura ambiente interior	suelto, cortocircuito o circuito abierto.	Cortocircuito o circuito abierto: sustituya un	
			nuevo sensor de temperatura ambiente IDU.	
		La PCB principal de la IDU está dañada.	Sustituya la placa principal de la IDU por una nueva.	
		El cable de conexión de IDU y ODU se conectó en orden incorrecto durante la	Compruebe que el cable de conexión es correcto.	
F6	Fallo de comunicación	Mal contacto entre el cable de conexión y el bloque de terminales	Conéctalo bien de nuevo.	
		El cable de conexión está dañado	Sustituya un nuevo cable de conexión	
	interior y exterior	No hay salida de tensión nominal de la	Compruebe la tensión de la fuente de	
		ODU o la PCB principal de la IDU está	alimentación o sustituya una nueva PCB principal	
		El circuito impreso principal de la ODU está dañado	El El circuito impreso principal de la ODU está dañado.	
EF	Fallo EEPROM de la unidad exterior	La PCB principal de la ODU está dañada.	Sustituir una nueva PCB principal ODU	
		El cable de conexión del compresor ODU	Conecte bien el cable o sustituya el cable de	
	Arranque anormal	está suelto o dañado.	conexión del compresor por uno nuevo.	
E4	del compresor (fallo	Arranque anormal del compresor (fallo de	Compruebe la secuencia de cables de	
	de fase, marcha	fase, marcha atrás)	conexión del compresor ODU	
	atrás)	El circuito impreso principal de la ODU está dañado.	Sustituir una nueva PCB principal ODU	
E3	Fallo del compresor	El circuito impreso principal de la ODU está dañado.	Sustituir una nueva PCB principal ODU	

	fuera de paso		
F9	Fallo del módulo IPM Módulo de alimentación inteligente	ODU main PCB is damaged.	El circuito impreso principal de la ODU está dañado.
F5	Fallo del sensor de temperatura de escape	El sensor de temperatura de escape ODU está suelto, cortocircuito o circuito abierto. El circuito impreso principal de la ODU está dañado.	Flojo: conéctelo bien de nuevo; Cortocircuito o circuito abierto: sustituir un nuevo sensor de temperatura de escape ODU. Sustituir una nueva PCB principal ODU.
F4	Fallo del sensor de temperatura de la batería exterior	El sensor de temperatura de la bobina ODU está suelto, cortocircuito o circuito abierto. El circuito impreso principal de la ODU está dañado.	Flojo: conéctelo bien de nuevo; Cortocircuito o circuito abierto: sustituya un nuevo sensor de temperatura de la bobina ODU. Sustituir una nueva PCB principal ODU.
F2	Fallo del sensor de temperatura ambiente exterior	ODU sensor de temperatura ambiente está suelto, cortocircuito o circuito abierto. La PCB principal de la ODU está dañada.	Flojo: conéctelo bien de nuevo; Cortocircuito o circuito abierto: sustituya un nuevo sensor de temperatura de la bobina ODU. Sustituir una nueva PCB principal ODU
E2	Fallo del motor del ventilador de CC exterior	Fallo del motor del ventilador de CC La PCB principal de la ODU está dañada o la selección del modelo de ventilador en la EEPROM es incorrecta.	Sustituir un nuevo motor de ventilador de CC Sustituir una nueva PCB principal ODU
PROTEC	CIONES		
PE	Protección por exceso de temperatura ambiente exterior de calefacción		
P4	Protección contra sobrecalentamient o de la batería	Fenómeno normal, es la autoprotección de las condiciones del aire.	El funcionamiento del sistema en alta carga puede conducir a las siguientes protecciones; También un sensor incorrecto puede conducir a las protecciones también, puede comprobar el sensor
P5	Protección anticongelación de la batería interior		de acuerdo con los códigos de еггог.
P9	Protección IPM contra sobretemperatura	Fenómeno normal, es la autoprotección de las condiciones del aire.	El sistema funciona con mucha carga, la temperatura de los dispositivos es demasiado alta.
P7	Unidad exterior Protección contra sobretensión/baja tensión alterna	Power supplyTensión de alimentación demasiado alta o demasiado baja voltage is too high or too low	Compruebe el voltaje de la fuente de alimentación, el rango de voltaje es de 136-276V.

7. Comprobación de los componentes eléctricos

7.1 Medir la resistencia del aislamiento

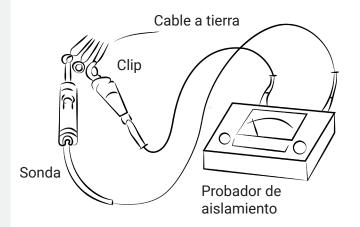
El aislamiento está en buen estado si la resistencia supera los $2\ M\Omega$.

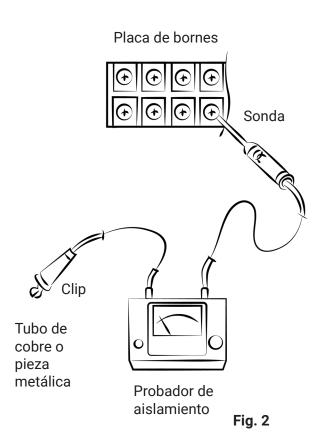
7.1.1 Cables de alimentación

Sujete las clavijas de tierra del enchufe de alimentación con la pinza del comprobador de resistencia del aislamiento y mida la resistencia colocando una sonda en cualquiera de los cables de alimentación. (Fig. 1)

A continuación, mida la resistencia entre el cable de tierra y el otro cable de alimentación. (Fig. 1)

7.1.2 Unidad interior


Sujete una aleta de la placa de aluminio o un tubo de cobre con la pinza del cable del comprobador de resistencia del aislamiento y mida la resistencia colocando una sonda en cada tornillo terminal de la placa de bornes. (Fig. 2)


Tenga en cuenta que el terminal de la línea de tierra debe omitirse para la comprobación.

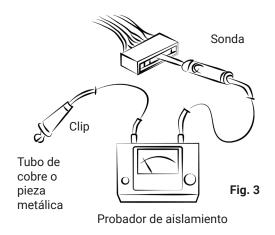
7.1.3 Unidad exterior

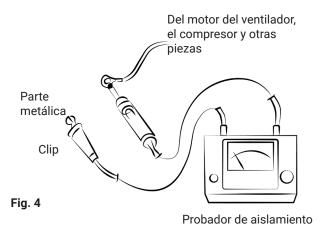
Sujete una parte metálica de la unidad con la pinza para cables del comprobador de resistencia de aislamiento y mida la resistencia colocando una sonda en cada tornillo terminal donde se conectan las líneas de alimentación en la placa de terminales. (Fig. 2)

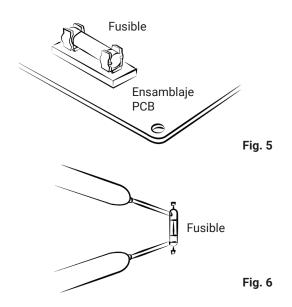
Fig. 1

7.1.4 Medición de la resistencia de aislamiento de piezas eléctricas

Desconecte los cables conductores de la pieza eléctrica deseada de la placa de terminales. Condensador, etc.


Desconecte también el conector. A continuación, mida la resistencia del aislamiento. (Fig. 3 y 4)


NOTA: Consulte el esquema eléctrico. Si la sonda no puede entrar en los polos porque el orificio es demasiado estrecho, utilice una sonda con una clavija más fina.


7.2 Comprobación de la continuidad del fusible en la placa de circuito impreso

Extraiga la placa de circuito impreso de la caja de componentes eléctricos. A continuación, extraiga el fusible de la placa de circuito impreso (Fig. 5).

Compruebe la continuidad utilizando un multímetro como se muestra en la Fig. 6.

